Reaction of 2,3-Dihydro-1,4-benzodithiine and 2,3-Dihydro-1,4-benzoxathiine with Sodium Methoxide

James Y. SATOH, * Chiaki KURODA, Takashi YAMADA, Masayuki
SUKEKAWA, Yasuo YAMADA, and Thomas T. TAKAHASHI†

Department of Chemistry, Faculty of Science, St. Paul's (Rikkyo) University,
Nishi-Ikebukuro, Toshima-ku, Tokyo 171

†Department of Chemistry, The Jikei University School of Medicine, Kokuryo,
Chofu, Tokyo 182

2,3-Dihydro-1,4-benzodithiines and 2,3-dihydro-1,4-benzoxathiines react with sodium methoxide in DMA to give 1,3-benzodithioles and 2-(vinylthio)phenols, respectively.

Recently, we reported on a new route to 2,3-dihydro-1,4-benzodithiines and 2,3-dihydro-1,4-benzoxathiines from the hemithio- and dithioacetals of cyclo-hexanones, respectively. $^{1)}$ In order to synthesize benzene-1,2-dithiols and 2-mercaptophenols, therefore, we attempted to react these benzodithiines 1a-e and benzoxathiines 1f-j with sodium methoxide in DMA, according to Tiecco et al. $^{2)}$ We now report that the heterocyclic ring contraction and ring cleavage occur in these reactions to give 1,3-benzodithioles 2a-e and 2-(vinylthio)phenols 3f-j, respectively. The results are summarized in Table 1.

Table 1.	Reactions of	2,3-dihydro-1,4-benzodithiines	1a -	е		
and 2,3-dihydro-1,4-benzoxathiines 1f - j						

St	arting	, mat	erial 1	and pro	ducts 2	and 3	Products	s 2 and 3
	Substituents					Isolated Bp (°C/mmHg		
		Х	R^1	R^2	R^3	R ⁴	yield/%	or [Mp /°C]
1a,	2a ³⁾	s	Н	Me	Н	Н	54	oil
1b,	2b	s	H	Bu ^t	H	H	62	[68-70]
1c,	2c	S	Me	Н	H	Me	52	[230-232]
1d,	2d	S	Me	Н	Me	Н	70	oil
1e,	2e	s	$\mathtt{Pr^i}$	νН	Н	Me	68	oil
1f,	3f ⁴⁾	0	Н	Н	Me	Н	64	56-57(5)
1g,	3g	0	Н	Bu ^t	H	Н	65	72-74(5)
1h,	3h	0	Me	Н	H	Me	78	63-64(5)
1i,	3i	0	Me	H	Me	H	80	80-81(7)
1j,	3ј	0	$\mathtt{Pr}^{\mathtt{i}}$	Н	Н	Me	89	63-64(4)

All compounds reported here gave satisfactory IR and NMR spectra, which will be reported elsewhere.

The reaction would proceed through the pathway shown below.

It is well known that 2 and/or 3-substituted 1,4-benzodioxines, 5) 1,4-dithiane, 6) 1,4-oxathiane, 7) and 1,4-dithiine monosulfoxide 8) undergo ring contraction to give five membered heterocyclic compounds. The present reaction is the first case of the heterocyclic ring contraction of 2,3-dihydro-1,4-benzo-dithiines, which have neither electron delocalizing groups nor leaving groups at $C_{(2)}$ and/or $C_{(3)}$, to form 1,3-benzodithioles. Moreover, this reaction, utilizing 1,4-oxathiine derivatives readily available by the route developed in our preliminary work, 1) thus affords an improved method for synthesizing the 2-(vinylthio)phenol derivatives with alkyl groups in desired positions.

References

- 1) J. Y. Satoh, A. M. Haruta, C. T. Yokoyama, Y. Yamada, and M. Hirose, J. Chem. Soc., Chem. Commun., 1985, 1645.
- 2) L. Testaferri, M. Tiecco, M. Tingoli, D. Chianelli, and M. Montanucci, Synthesis, 1983, 751.
- 3) 2,5-Methyl-1,3-benzodithiole (2a); 1 H NMR (CDCl₃, δ): 1.71 (d, J=7 Hz, 3H, CH-CH₃), 2.30 (s, 3H, Ar-CH₃), 4.98 (q, J=7 Hz, 1H, CH-CH₃), 6.65-7.40 (m, 3H, Ar-H); m/z 182 (M⁺).
- 4) 4-Methyl-2-(vinylthio)phenol (3f); 1 H NMR: (CDCl₃, δ) 2.30 (s, 3H, Ar-CH₃), 4.95 (d, J=17 Hz, 1H), 5.25 (d, J=9 Hz, 1H), 6.10 (s, 1H: disappeared by D₂O), 6.25 (dd, J=9, 17 Hz, 1H), 6.80-7.20 (m, 3H); m/z : 166 (M⁺).
- 5) C. B. Chapleo and P. L. Myers., Tetrahedron Lett., 22, 4839 (1981); A. R. Katritzky, M. J. Sewell, R. D. Topsom, A. M. Monro, and G. W. H. Potter, Tetrahedron, 22, 931 (1966).
- 6) W. E. Parham and M. D. Bhavsar., J. Org. Chem., 28, 2686 (1963).
- 7) R. R. King, R. Greenhalgh, and W. D. Marshall, J. Org. Chem., 43, 1262 (1978).
- 8) K. Kobayashi and K. Mutai, Chem. Lett., <u>1981</u>, 1105; K. Kobayashi and K. Mutai, Tetrahedron Lett., <u>22</u>, 5201 (1981).

(Received September 13, 1989)